(index<- ) ./libstd/rt/task.rs
git branch: * master 5200215 auto merge of #14035 : alexcrichton/rust/experimental, r=huonw
modified: Fri May 9 13:02:28 2014
1 // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Language-level runtime services that should reasonably expected
12 //! to be available 'everywhere'. Local heaps, GC, unwinding,
13 //! local storage, and logging. Even a 'freestanding' Rust would likely want
14 //! to implement this.
15
16 use any::AnyOwnExt;
17 use cast;
18 use cleanup;
19 use clone::Clone;
20 use comm::Sender;
21 use io::Writer;
22 use iter::{Iterator, Take};
23 use kinds::Send;
24 use local_data;
25 use ops::Drop;
26 use option::{Option, Some, None};
27 use owned::Box;
28 use prelude::drop;
29 use result::{Result, Ok, Err};
30 use rt::Runtime;
31 use rt::local::Local;
32 use rt::local_heap::LocalHeap;
33 use rt::rtio::LocalIo;
34 use rt::unwind::Unwinder;
35 use str::SendStr;
36 use sync::arc::UnsafeArc;
37 use sync::atomics::{AtomicUint, SeqCst};
38 use task::{TaskResult, TaskOpts};
39 use unstable::finally::Finally;
40
41 /// The Task struct represents all state associated with a rust
42 /// task. There are at this point two primary "subtypes" of task,
43 /// however instead of using a subtype we just have a "task_type" field
44 /// in the struct. This contains a pointer to another struct that holds
45 /// the type-specific state.
46 pub struct Task {
47 pub heap: LocalHeap,
48 pub gc: GarbageCollector,
49 pub storage: LocalStorage,
50 pub unwinder: Unwinder,
51 pub death: Death,
52 pub destroyed: bool,
53 pub name: Option<SendStr>,
54
55 pub stdout: Option<Box<Writer:Send>>,
56 pub stderr: Option<Box<Writer:Send>>,
57
58 imp: Option<Box<Runtime:Send>>,
59 }
60
61 pub struct GarbageCollector;
62 pub struct LocalStorage(pub Option<local_data::Map>);
63
64 /// A handle to a blocked task. Usually this means having the Box<Task>
65 /// pointer by ownership, but if the task is killable, a killer can steal it
66 /// at any time.
67 pub enum BlockedTask {
68 Owned(Box<Task>),
69 Shared(UnsafeArc<AtomicUint>),
70 }
71
72 pub enum DeathAction {
73 /// Action to be done with the exit code. If set, also makes the task wait
74 /// until all its watched children exit before collecting the status.
75 Execute(proc(TaskResult):Send),
76 /// A channel to send the result of the task on when the task exits
77 SendMessage(Sender<TaskResult>),
78 }
79
80 /// Per-task state related to task death, killing, failure, etc.
81 pub struct Death {
82 pub on_exit: Option<DeathAction>,
83 }
84
85 pub struct BlockedTasks {
86 inner: UnsafeArc<AtomicUint>,
87 }
88
89 impl Task {
90 pub fn new() -> Task {
91 Task {
92 heap: LocalHeap::new(),
93 gc: GarbageCollector,
94 storage: LocalStorage(None),
95 unwinder: Unwinder::new(),
96 death: Death::new(),
97 destroyed: false,
98 name: None,
99 stdout: None,
100 stderr: None,
101 imp: None,
102 }
103 }
104
105 /// Executes the given closure as if it's running inside this task. The task
106 /// is consumed upon entry, and the destroyed task is returned from this
107 /// function in order for the caller to free. This function is guaranteed to
108 /// not unwind because the closure specified is run inside of a `rust_try`
109 /// block. (this is the only try/catch block in the world).
110 ///
111 /// This function is *not* meant to be abused as a "try/catch" block. This
112 /// is meant to be used at the absolute boundaries of a task's lifetime, and
113 /// only for that purpose.
114 pub fn run(~self, mut f: ||) -> Box<Task> {
115 // Need to put ourselves into TLS, but also need access to the unwinder.
116 // Unsafely get a handle to the task so we can continue to use it after
117 // putting it in tls (so we can invoke the unwinder).
118 let handle: *mut Task = unsafe {
119 *cast::transmute::<&Box<Task>, &*mut Task>(&self)
120 };
121 Local::put(self);
122
123 // The only try/catch block in the world. Attempt to run the task's
124 // client-specified code and catch any failures.
125 let try_block = || {
126
127 // Run the task main function, then do some cleanup.
128 f.finally(|| {
129 #[allow(unused_must_use)]
130 fn close_outputs() {
131 let mut task = Local::borrow(None::<Task>);
132 let stderr = task.stderr.take();
133 let stdout = task.stdout.take();
134 drop(task);
135 match stdout { Some(mut w) => { w.flush(); }, None => {} }
136 match stderr { Some(mut w) => { w.flush(); }, None => {} }
137 }
138
139 // First, flush/destroy the user stdout/logger because these
140 // destructors can run arbitrary code.
141 close_outputs();
142
143 // First, destroy task-local storage. This may run user dtors.
144 //
145 // FIXME #8302: Dear diary. I'm so tired and confused.
146 // There's some interaction in rustc between the box
147 // annihilator and the TLS dtor by which TLS is
148 // accessed from annihilated box dtors *after* TLS is
149 // destroyed. Somehow setting TLS back to null, as the
150 // old runtime did, makes this work, but I don't currently
151 // understand how. I would expect that, if the annihilator
152 // reinvokes TLS while TLS is uninitialized, that
153 // TLS would be reinitialized but never destroyed,
154 // but somehow this works. I have no idea what's going
155 // on but this seems to make things magically work. FML.
156 //
157 // (added after initial comment) A possible interaction here is
158 // that the destructors for the objects in TLS themselves invoke
159 // TLS, or possibly some destructors for those objects being
160 // annihilated invoke TLS. Sadly these two operations seemed to
161 // be intertwined, and miraculously work for now...
162 let mut task = Local::borrow(None::<Task>);
163 let storage_map = {
164 let &LocalStorage(ref mut optmap) = &mut task.storage;
165 optmap.take()
166 };
167 drop(task);
168 drop(storage_map);
169
170 // Destroy remaining boxes. Also may run user dtors.
171 unsafe { cleanup::annihilate(); }
172
173 // Finally, just in case user dtors printed/logged during TLS
174 // cleanup and annihilation, re-destroy stdout and the logger.
175 // Note that these will have been initialized with a
176 // runtime-provided type which we have control over what the
177 // destructor does.
178 close_outputs();
179 })
180 };
181
182 unsafe { (*handle).unwinder.try(try_block); }
183
184 // Here we must unsafely borrow the task in order to not remove it from
185 // TLS. When collecting failure, we may attempt to send on a channel (or
186 // just run aribitrary code), so we must be sure to still have a local
187 // task in TLS.
188 unsafe {
189 let me: *mut Task = Local::unsafe_borrow();
190 (*me).death.collect_failure((*me).unwinder.result());
191 }
192 let mut me: Box<Task> = Local::take();
193 me.destroyed = true;
194 return me;
195 }
196
197 /// Inserts a runtime object into this task, transferring ownership to the
198 /// task. It is illegal to replace a previous runtime object in this task
199 /// with this argument.
200 pub fn put_runtime(&mut self, ops: Box<Runtime:Send>) {
201 assert!(self.imp.is_none());
202 self.imp = Some(ops);
203 }
204
205 /// Attempts to extract the runtime as a specific type. If the runtime does
206 /// not have the provided type, then the runtime is not removed. If the
207 /// runtime does have the specified type, then it is removed and returned
208 /// (transfer of ownership).
209 ///
210 /// It is recommended to only use this method when *absolutely necessary*.
211 /// This function may not be available in the future.
212 pub fn maybe_take_runtime<T: 'static>(&mut self) -> Option<Box<T>> {
213 // This is a terrible, terrible function. The general idea here is to
214 // take the runtime, cast it to Box<Any>, check if it has the right
215 // type, and then re-cast it back if necessary. The method of doing
216 // this is pretty sketchy and involves shuffling vtables of trait
217 // objects around, but it gets the job done.
218 //
219 // FIXME: This function is a serious code smell and should be avoided at
220 // all costs. I have yet to think of a method to avoid this
221 // function, and I would be saddened if more usage of the function
222 // crops up.
223 unsafe {
224 let imp = self.imp.take_unwrap();
225 let &(vtable, _): &(uint, uint) = cast::transmute(&imp);
226 match imp.wrap().move::<T>() {
227 Ok(t) => Some(t),
228 Err(t) => {
229 let (_, obj): (uint, uint) = cast::transmute(t);
230 let obj: Box<Runtime:Send> =
231 cast::transmute((vtable, obj));
232 self.put_runtime(obj);
233 None
234 }
235 }
236 }
237 }
238
239 /// Spawns a sibling to this task. The newly spawned task is configured with
240 /// the `opts` structure and will run `f` as the body of its code.
241 pub fn spawn_sibling(mut ~self, opts: TaskOpts, f: proc():Send) {
242 let ops = self.imp.take_unwrap();
243 ops.spawn_sibling(self, opts, f)
244 }
245
246 /// Deschedules the current task, invoking `f` `amt` times. It is not
247 /// recommended to use this function directly, but rather communication
248 /// primitives in `std::comm` should be used.
249 pub fn deschedule(mut ~self, amt: uint,
250 f: |BlockedTask| -> Result<(), BlockedTask>) {
251 let ops = self.imp.take_unwrap();
252 ops.deschedule(amt, self, f)
253 }
254
255 /// Wakes up a previously blocked task, optionally specifying whether the
256 /// current task can accept a change in scheduling. This function can only
257 /// be called on tasks that were previously blocked in `deschedule`.
258 pub fn reawaken(mut ~self) {
259 let ops = self.imp.take_unwrap();
260 ops.reawaken(self);
261 }
262
263 /// Yields control of this task to another task. This function will
264 /// eventually return, but possibly not immediately. This is used as an
265 /// opportunity to allow other tasks a chance to run.
266 pub fn yield_now(mut ~self) {
267 let ops = self.imp.take_unwrap();
268 ops.yield_now(self);
269 }
270
271 /// Similar to `yield_now`, except that this function may immediately return
272 /// without yielding (depending on what the runtime decides to do).
273 pub fn maybe_yield(mut ~self) {
274 let ops = self.imp.take_unwrap();
275 ops.maybe_yield(self);
276 }
277
278 /// Acquires a handle to the I/O factory that this task contains, normally
279 /// stored in the task's runtime. This factory may not always be available,
280 /// which is why the return type is `Option`
281 pub fn local_io<'a>(&'a mut self) -> Option<LocalIo<'a>> {
282 self.imp.get_mut_ref().local_io()
283 }
284
285 /// Returns the stack bounds for this task in (lo, hi) format. The stack
286 /// bounds may not be known for all tasks, so the return value may be
287 /// `None`.
288 pub fn stack_bounds(&self) -> (uint, uint) {
289 self.imp.get_ref().stack_bounds()
290 }
291
292 /// Returns whether it is legal for this task to block the OS thread that it
293 /// is running on.
294 pub fn can_block(&self) -> bool {
295 self.imp.get_ref().can_block()
296 }
297 }
298
299 impl Drop for Task {
300 fn drop(&mut self) {
301 rtdebug!("called drop for a task: {}", self as *mut Task as uint);
302 rtassert!(self.destroyed);
303 }
304 }
305
306 impl Iterator<BlockedTask> for BlockedTasks {
307 fn next(&mut self) -> Option<BlockedTask> {
308 Some(Shared(self.inner.clone()))
309 }
310 }
311
312 impl BlockedTask {
313 /// Returns Some if the task was successfully woken; None if already killed.
314 pub fn wake(self) -> Option<Box<Task>> {
315 match self {
316 Owned(task) => Some(task),
317 Shared(arc) => unsafe {
318 match (*arc.get()).swap(0, SeqCst) {
319 0 => None,
320 n => Some(cast::transmute(n)),
321 }
322 }
323 }
324 }
325
326 /// Reawakens this task if ownership is acquired. If finer-grained control
327 /// is desired, use `wake` instead.
328 pub fn reawaken(self) {
329 self.wake().map(|t| t.reawaken());
330 }
331
332 // This assertion has two flavours because the wake involves an atomic op.
333 // In the faster version, destructors will fail dramatically instead.
334 #[cfg(not(test))] pub fn trash(self) { }
335 #[cfg(test)] pub fn trash(self) { assert!(self.wake().is_none()); }
336
337 /// Create a blocked task, unless the task was already killed.
338 pub fn block(task: Box<Task>) -> BlockedTask {
339 Owned(task)
340 }
341
342 /// Converts one blocked task handle to a list of many handles to the same.
343 pub fn make_selectable(self, num_handles: uint) -> Take<BlockedTasks> {
344 let arc = match self {
345 Owned(task) => {
346 let flag = unsafe { AtomicUint::new(cast::transmute(task)) };
347 UnsafeArc::new(flag)
348 }
349 Shared(arc) => arc.clone(),
350 };
351 BlockedTasks{ inner: arc }.take(num_handles)
352 }
353
354 /// Convert to an unsafe uint value. Useful for storing in a pipe's state
355 /// flag.
356 #[inline]
357 pub unsafe fn cast_to_uint(self) -> uint {
358 match self {
359 Owned(task) => {
360 let blocked_task_ptr: uint = cast::transmute(task);
361 rtassert!(blocked_task_ptr & 0x1 == 0);
362 blocked_task_ptr
363 }
364 Shared(arc) => {
365 let blocked_task_ptr: uint = cast::transmute(box arc);
366 rtassert!(blocked_task_ptr & 0x1 == 0);
367 blocked_task_ptr | 0x1
368 }
369 }
370 }
371
372 /// Convert from an unsafe uint value. Useful for retrieving a pipe's state
373 /// flag.
374 #[inline]
375 pub unsafe fn cast_from_uint(blocked_task_ptr: uint) -> BlockedTask {
376 if blocked_task_ptr & 0x1 == 0 {
377 Owned(cast::transmute(blocked_task_ptr))
378 } else {
379 let ptr: Box<UnsafeArc<AtomicUint>> =
380 cast::transmute(blocked_task_ptr & !1);
381 Shared(*ptr)
382 }
383 }
384 }
385
386 impl Death {
387 pub fn new() -> Death {
388 Death { on_exit: None, }
389 }
390
391 /// Collect failure exit codes from children and propagate them to a parent.
392 pub fn collect_failure(&mut self, result: TaskResult) {
393 match self.on_exit.take() {
394 Some(Execute(f)) => f(result),
395 Some(SendMessage(ch)) => { let _ = ch.send_opt(result); }
396 None => {}
397 }
398 }
399 }
400
401 impl Drop for Death {
402 fn drop(&mut self) {
403 // make this type noncopyable
404 }
405 }
406
407 #[cfg(test)]
408 mod test {
409 use super::*;
410 use prelude::*;
411 use task;
412
413 #[test]
414 fn local_heap() {
415 let a = @5;
416 let b = a;
417 assert!(*a == 5);
418 assert!(*b == 5);
419 }
420
421 #[test]
422 fn tls() {
423 local_data_key!(key: @~str)
424 key.replace(Some(@"data".to_owned()));
425 assert_eq!(key.get().unwrap().as_slice(), "data");
426 local_data_key!(key2: @~str)
427 key2.replace(Some(@"data".to_owned()));
428 assert_eq!(key2.get().unwrap().as_slice(), "data");
429 }
430
431 #[test]
432 fn unwind() {
433 let result = task::try(proc()());
434 rtdebug!("trying first assert");
435 assert!(result.is_ok());
436 let result = task::try::<()>(proc() fail!());
437 rtdebug!("trying second assert");
438 assert!(result.is_err());
439 }
440
441 #[test]
442 fn rng() {
443 use rand::{StdRng, Rng};
444 let mut r = StdRng::new().ok().unwrap();
445 let _ = r.next_u32();
446 }
447
448 #[test]
449 fn logging() {
450 info!("here i am. logging in a newsched task");
451 }
452
453 #[test]
454 fn comm_stream() {
455 let (tx, rx) = channel();
456 tx.send(10);
457 assert!(rx.recv() == 10);
458 }
459
460 #[test]
461 fn comm_shared_chan() {
462 let (tx, rx) = channel();
463 tx.send(10);
464 assert!(rx.recv() == 10);
465 }
466
467 #[test]
468 fn heap_cycles() {
469 use cell::RefCell;
470 use option::{Option, Some, None};
471
472 struct List {
473 next: Option<@RefCell<List>>,
474 }
475
476 let a = @RefCell::new(List { next: None });
477 let b = @RefCell::new(List { next: Some(a) });
478
479 {
480 let mut a = a.borrow_mut();
481 a.next = Some(b);
482 }
483 }
484
485 #[test]
486 #[should_fail]
487 fn test_begin_unwind() {
488 use rt::unwind::begin_unwind;
489 begin_unwind("cause", file!(), line!())
490 }
491
492 // Task blocking tests
493
494 #[test]
495 fn block_and_wake() {
496 let task = box Task::new();
497 let mut task = BlockedTask::block(task).wake().unwrap();
498 task.destroyed = true;
499 }
500 }